Search results for "AdaBoost classifier"
showing 2 items of 2 documents
A Comparative Study on Feature Selection for Retinal Vessel Segmentation Using FABC
2009
This paper presents a comparative study on five feature selection heuristics applied to a retinal image database called DRIVE. Features are chosen from a feature vector (encoding local information, but as well information from structures and shapes available in the image) constructed for each pixel in the field of view (FOV) of the image. After selecting the most discriminatory features, an AdaBoost classifier is applied for training. The results of classifications are used to compare the effectiveness of the five feature selection methods.
FABC: Retinal Vessel Segmentation Using AdaBoost
2010
This paper presents a method for automated vessel segmentation in retinal images. For each pixel in the field of view of the image, a 41-D feature vector is constructed, encoding information on the local intensity structure, spatial properties, and geometry at multiple scales. An AdaBoost classifier is trained on 789 914 gold standard examples of vessel and nonvessel pixels, then used for classifying previously unseen images. The algorithm was tested on the public digital retinal images for vessel extraction (DRIVE) set, frequently used in the literature and consisting of 40 manually labeled images with gold standard. Results were compared experimentally with those of eight algorithms as we…